1. Two objects have a mass m and are separated by a distance d. The gravitational force between them is F. For each of the following changes, determine how the force of gravity changes.
a) One of the masses is doubled

$$
2 F \quad \Rightarrow \frac{G(2 m) m}{d^{2}}
$$

$$
F=\frac{G M m}{d^{2}}
$$

b) Both of the masses are doubled

$$
4 F \quad \Rightarrow \frac{G(2 m)(2 m)}{d^{2}}
$$

c) The distance between them is doubled

$$
\frac{1}{4} F \Rightarrow \frac{G M M}{(2 d)^{2}}=\frac{1}{4} \frac{G M m}{4^{2}}
$$

d) The distance between them is tripled and one mass is doubled

$$
\frac{2}{9} F \Rightarrow \frac{G(2 m) m}{(3+)^{2}}=\frac{2}{9} \frac{G m m}{d^{2}}
$$

e) The distance between them is halved and both masses are doubled

$$
16 F \Rightarrow \frac{G(2 m)(2 m)}{\left(\frac{1}{2} d\right)^{2}}=\frac{4 G m m}{\frac{1}{4} d^{2}}=16 \frac{G m m}{d^{2}}
$$

2. A satellite of mass 1000 kg is in a circular orbit around a planet with mass $7.5 \times 10^{26} \mathrm{~kg}$ at a radius of 9.7 x $10^{7} \mathrm{~m}$.

$$
\begin{aligned}
& \text { a) What is the force acting on the satellite? } \\
& \mathrm{r}^{2}
\end{aligned}=\frac{6.67 \times 10^{-11}\left(7.5 \times 10^{26}\right)(1000)}{\left(9.7 \times 10^{7}\right)^{2}}=5
$$

b) What is the acceleration of the satellite?

$$
g=\frac{G M}{r^{2}} \text { or } g=\frac{F}{m} \quad g=\frac{5316 \mathrm{~N}}{1000 \mathrm{mg}}=5.3 \mathrm{~m} / \mathrm{s}^{2}
$$

c) What is the velocity of the satellite?
\rightarrow THE acceleration due to

d) How would the answers to a), b), and c) change if the satellite's mass was doubled?

3.A $25-\mathrm{kg}$ box is sliding down an ice-covered hill. When it reaches point A , the box is moving at $11 \mathrm{~m} / \mathrm{s}$. Point A is at the bottom of a circular arc that has a radius $R=7.5 \mathrm{~m}$. What is the magnitude of the normal force on the box at Point A?

A) 250 N

B) 280 N
C) 400 N

Explain how your arrived at your answer:

- The mass is moving in a circular e path at the

$$
\begin{aligned}
& \sum F=F_{N}-m g \\
& \frac{m v^{2}}{r}=F_{N}-m g \quad F_{N}=\frac{M v^{2}}{r}+M g \\
&=\frac{25(11)^{2}}{7.5}+25(10) \\
& 400+250
\end{aligned}
$$ Botrum of tote HIL AND Experiences connelpetac

Acceleration up, toward the center of the circle. The Normal force is 1) supporionh Gravity i if Providing FoRce to Accelerate the mass \Rightarrow it is Binger tau Just weight.
\qquad
4. A $0.75-\mathrm{kg}$ ball is attached to a $1.0-\mathrm{m}$ rope and whirled in a vertical circle. The rope will break when the tension exceeds 450 N . What is the maximum speed the ball can have at the bottom of the circle without breaking the rope?
A) 24 m $/ 8$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $32 \mathrm{~m} / \mathrm{s}$
D) $16 \mathrm{~m} / \mathrm{s}$
E) $38 \mathrm{~m} / \mathrm{s}$

Explain how you arrived at your answer:
the max tension is 450 N. in a vertical circle, max TENSION IS AT THE BOTTOM Because Tousion is opposite $\overbrace{m g}^{T} \uparrow a_{c}$

$$
\begin{aligned}
m a_{c} & =T-m g \\
m \frac{v^{2}}{r} & =T-m g \\
.75 v^{2} & =460-.75(10) \\
\frac{1 m}{} & =24 m(s
\end{aligned}
$$ Welaut

Use the following to answer questions 5-6:
A small car of mass M travels along a straight, horizontal track.
As suggested in the figure, the track then bends into a vertical circle of radius R.

5. What is the minimum acceleration that the car must have at the top of the track if it is to remain in contact with the track?
A) $4.9 \mathrm{~m} / \mathrm{s}^{2}$, downward
B) $4.9 \mathrm{~m} / \mathrm{s}^{2}$, upward
D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, downward
E) $19.6 \mathrm{~m} / \mathrm{s}^{2}$, upward
C) $9.8 \mathrm{~m} / \mathrm{s}^{2}$, upward

Explain how you arrived at your answer:

- the acceleration of any object moving

in a circle is toward the centre So it will have a downward Acceleration at the top.

- AT THE MINIMUM SPEAR. TENSION $=0 \quad a_{c}=9$
AND GRAVITY IS THE ONLY FORLE ACTING

6. Which expression determines the minimum speed that the car must have at the top of the track if it is to remain in contact with the track?

$$
\text { A) } v=M g R \quad \text { B) } v=2 g R \text { C) } v^{2}=2 g R \text { D) } v^{2}=g R \text { E) } v=g R
$$

Explain how you arrived at your answer:
USING RHE LOST EXPRESSION From \# 5 (WHERE UTE $a_{c}=g$)
$\frac{v^{2}}{r}=g$

$$
v^{2}=r g
$$

\qquad
7. A $1500-\mathrm{kg}$ car travels at a constant speed of $22 \mathrm{~m} / \mathrm{s}$ around a circular track that has a radius of 85 m . Which statement is true concerning this car?
A) The velocity of the car is changing.
B) The car is characterized by constant velocity.
C) The car is characterized by constant acceleration.
D) The car has a velocity vector that points along the radius of the circle.
E) The car has an acceleration vector that is tangent to the circle at all times.

Explain how you arrived at your answer:

- As $I T$ Moves in a circle w/ consmnt Speed - The
direction of The car chances \rightarrow Meaning nt at
The velocity chances. Velocimy always points TanGent to the circle Ans acceleration Points Along the RADIUS.

8. A car traveling at $20 \mathrm{~m} / \mathrm{s}$ rounds a curve so that its centripetal acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$. What is the radius of the curve?
A) 4 m
B) 8 m
80 m D) 160 m
E) 640 m
$a_{c}=\frac{v^{2}}{r} \quad r=\frac{r^{2}}{c}=\frac{20^{2}}{5}$
9. A certain string just breaks when it is under 400 N of tension. A boy uses this string to whirl a $10-\mathrm{kg}$ stone in a horizontal circle of radius 10 m . The boy continuously increases the speed of the stone. At approximately what speed will the string break?
A) $10 \mathrm{~m} / \mathrm{s} \quad 20 \mathrm{~m} / \mathrm{B}$ C) $80 \mathrm{~m} / \mathrm{s}$
D) $100 \mathrm{~m} / \mathrm{s}$
E) $400 \mathrm{~m} / \mathrm{s}$

Explain how you arrived at your answer:
IN A HORIZONTAL CIRCLE, THE ONLY FORCE
ACING ON THE ObJECT IS TENSION.
TE BIGGEST TENSION CAN BE IS 400 N .

10. Which force is responsible for holding a car in a curve?
A) the car's weight
B) the force of friction
C) the reaction force to the car's weight
D) the vertical component of the normal force
E) the horizontal component of the normal force

Explain how you arrived at your answer:

- Wirtout frelcion. the car would con nne moving in a steallat line (Think of L Diving on ices).
-Friction pushes tie che Toward tie center of THE URN.
\qquad
Period \qquad
AP Physics 1

11. You are spinning a bucket full of water (mass $=2 \mathrm{~kg}$) by a rope ($\mathrm{of} \mathrm{L}=1 \mathrm{~m}$) in a vertical circle.
a. What is the minimum speed at which you can swing the bucket without getting wet?

Q min. Speak, $T=0$ AND Weight causes Lavmipetal Acleleranon

$$
\begin{aligned}
& p a_{c}=n / g \\
& \frac{v^{2}}{r}=g \quad v=\sqrt{r g}=\frac{\sqrt{1 m\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)}}{=3 \cdot 16 \mathrm{~m} / \mathrm{s})}
\end{aligned}
$$

b. The rope will provide up to 200 N of force before it breaks. What is the maximum speed at which you can swing the bucket?

- The Rope Breaks at the Bottom $f_{\text {- tension is zoon }}$

c. If the rope does snap when the bucket is at its lowest point, in which direction does the bucket fly? Assume that you started spinning the bucket like you would an underhanded throw.
- The bucket will continue moving in a strakht line-horiz. To EARTH.

12. A satellite of mass mS orbits a planet of mass mP at an altitude equal to twice the radius (R) of the planet. What is the satellite's speed assuming a perfectly circular orbit?
(A) $\mathrm{v}=\sqrt{\frac{G m_{p}}{R}}$
(C) $v=\sqrt{\frac{G m_{S}}{2 R}}$
(B) $v=\sqrt{\frac{G m_{s}}{R}}$

Explain how you arrived at your answer:

- With an altitude of 2R -the satellite is 3R from the enter of rte punter. - centripetal force ls equal to geavimatoonsa force

13. Which of the following changes would increase the magnitude of the gravitational field intensity an object feel when near a planet? (Select two answers.)
(B) in
(B) increase the mass of the planet
(D)-decrease the separation distance between object and planet

$$
\begin{aligned}
& \text { Explain how you arrived at your answer: }
\end{aligned}
$$

14. The gravitational field at the location of the International Space Station is about $9 \mathrm{~m} / \mathrm{s}^{2}$. Explain why, even though it is in space, the ISS has 90% of our gravity.
THE ISS IS ONLY SLiGHTLY FURTHER AWAY From the center of the earth than we ARE. $g=\frac{G M}{r^{2}} \sim \operatorname{IF} r$ INCREASES BY A SMALL AMOUNT, g DECREASES BY A SUNK AMOUNT.
15. The gravitational field at the location of the International Space Station is about $9 \mathrm{~m} / \mathrm{s}^{2}$. Explain why astronauts in the ISS feel weightless.
The ASTRONAVTS ARE in FREE FALL. While OBjECTS in free Fin experience weluht (trey do aclelerait because of (It), ThEY DONT FEZ it.
16. Explain why the orbital speed of a satellite does not depend on the mass of the satellite.

- Martemitacally, me mass CROSSES OUT

$$
\begin{aligned}
\Sigma F & =F \\
m a_{c} & =\frac{G M M}{r^{2}}
\end{aligned}
$$

- The Centripetal forcé/net FORCE IS PROPORTIONAL TO THE NASS OF THE OBjECT.
- the gravitational force depends on toe mass in the same WAY
- Since Bona forces depend on DTE OBjECTS MASS SIMICNILY, THE MASS "Crosses our" AND DoEsent lappET the otter quantines.

